Frequently Used Nonlinear Crystal Materials

Frequently Used Nonlinear Crystal Materials

Lithium niobate (LiNbO3) and lithium tantalate (LiTaO3) are materials with a relatively strong nonlinearity. They are often used for nonlinear frequency conversion and also for electro-optic modulators. Both materials are available in congruent and in stoichiometric form, with important differences concerning periodic poling and photorefractive effects (see below). Lithium niobate and tantalate are the most often used materials in the context of periodic poling; the resulting materials are called PPLN (periodically poled lithium niobate) and PPLT, respectively, or PPSLN and PPSLT for the stoichiometric versions. Both have a relatively low damage threshold, but do not need to be operated at high intensities due to their high nonlinearity. They have a tendency for photorefractive effects, which are detrimental for frequency conversion, but are used for, e.g., holographic data storage in Fe-doped LiNbO3 crystals. The tendency for “photorefractive damage” depends strongly on the material composition; e.g. it can be reduced via MgO doping and by using a stoichiometric composition.

Potassium niobate (KNbO3) has a high nonlinearity. It is used for, e.g., frequency doubling to blue wavelengths and in piezoelectric applications.

Potassium titanyl phosphate (KTP, KTiOPO4) may be flux-grown (cheaper) or hydrothermal (better for high powers, lower tendency for gray tracking → photodarkening). The “KTP family” of materials also includes KTA (KTiOAsO4), RTP (RbTiOPO4) and RTA (RbTiAsPO4). These materials tend to have relatively high nonlinearities and are suitable for periodic poling.

Potassium dihydrogen phosphate (KDP, KH2PO4) and potassium dideuterium phosphate (KD*P or DKDP, KD2PO4, exhibiting extended infrared transmission), are available in large sizes at low price. They exhibit good homogeneity over large volumes and have a high damage threshold, but are hygroscopic and have a low nonlinearity.


There are a number of borates, the most important ones being lithium triborate (LiB3O5 = LBO), cesium lithium borate (CLBO, CsLiB6O10), β-barium borate (β-BaB2O4 = BBO, strongly hygroscopic, often used in Pockels cells), bismuth triborate (BiB3O6 = BIBO), and cesium borate (CSB3O5 = CBO). Yttrium calcium oxyborate (YCOB) and YAl3(BO3)4 (YAB) are also available in rare-earth-doped form for use as a laser gain medium, and can then simultaneously be used for generating and frequency-converting laser light. Less frequently used are strontium beryllium borate (Sr2Be2B2O7 = SBBO) and K2Al2B2O7 (KAB). LBO, BBO, CLBO, CBO and other borate crystals are suitable for the generation of relatively short wavelengths, e.g. in green and blue laser sources, and for UV generation (→ ultraviolet lasers), because their bandgap energy is relatively high, the crystals are relatively resistant to UV light, and there are suitable phase-matching options. Borates such as LBO and BBO also work well in broadly tunable optical parametric oscillators and optical parametric chirped-pulse amplification.

For mid-infrared (and partly also terahertz) generation, one requires crystal materials with a transparency range extending far into the infrared spectral region. The most important of these media are zinc germanium diphosphide (ZGP, ZnGeP2), silver gallium sulfide and selenide (AgGaS2 and AgGaSe2), gallium selenide (GaSe), and cadmium selenide (CdSe). Gallium arsenide (GaAs) has also become useful for mid-infrared applications, since it is possible to obtain quasi-phase matching in orientation-patterned GaAs .

Leave a Reply

Your email address will not be published. Required fields are marked *