Shalom EO is a leading supplier of Optical Components, Infrared Lenses, Laser Crystals and Components, Optical Filters, Infrared Optics, Wafers and Substrates, and Scintillators
Types of Substrates and Wafers

Types of Substrates and Wafers

Single Element Semiconductors
Silicon, Si – the most common semiconductor, atomic number 14, energy gap Eg = 1.12 eV – indirect bandgap; crystal structure – diamond, lattice constant 0.543 nm, atomic concentration 5×1022 atoms/cm-3, index of refraction 3.42, density 2.33 g/cm3, dielectric constant 11.7, intrinsic carrier concentration 1.02 x 1010 cm-3, mobility of electrons and holes at 300 K: 1450 and 500 cm2/V-s, thermal conductivity 1.31 W/cm-oC, thermal expansion coefficient 2.6 x 10-6 1/oC, melting point 1414 oC; excellent mechanical properties (MEMS applications); single crystal Si can be processed into wafers up to 300 mm in diameter.

Silicon on Insulator (SOI)
Only a thin layer on the surface of a silicon wafer is used for making electronic components; the rest serves essentially as a mechanical support. The role of SOI is to electronically insulate a fine layer of monocrystalline silicon from the rest of the silicon wafer. Integrated circuits can then be fabricated on the top layer of the SOI wafers using the same processes as would be used on plain silicon wafers. The embedded layer of insulation enables the SOI-based chips to function at significantly higher speeds while reducing electrical losses. The result is an increase in performance and a reduction in power consumption. There are two types of SOI wafers. Thin film SOI wafers have a device layer <1.5 ?m and thick film wafers have a device layer >1.5 μm.

Wafer bonding. – In this process the surface of two wafers are coated with an insulating layer (usually oxide). The insulating layers are then bonded together in a furnace creating one single wafer with a buried oxide layer (BOX) sandwiched between layers of semiconductor. The top of the wafer is then lapped and polished until a desired thickness of semiconductor above the BOX is achieved.

SIMOX – Separation by Implantation of Oxide. In this process a bulk semiconductor wafer is bombarded with oxygen ions, crating a layer of buried oxide. The thickness of intrinsic semiconductor above the box is determined by the ion energy. An anneal reinforces Si-O bonds in the BOX.

Single Element Semiconductors
Silicon, Si – the most common semiconductor, atomic number 14, energy gap Eg = 1.12 eV – indirect bandgap; crystal structure – diamond, lattice constant 0.543 nm, atomic concentration 5×1022 atoms/cm-3, index of refraction 3.42, density 2.33 g/cm3, dielectric constant 11.7, intrinsic carrier concentration 1.02 x 1010 cm-3, mobility of electrons and holes at 300 K: 1450 and 500 cm2/V-s, thermal conductivity 1.31 W/cm-oC, thermal expansion coefficient 2.6 x 10-6 1/oC, melting point 1414 oC; excellent mechanical properties (MEMS applications); single crystal Si can be processed into wafers up to 300 mm in diameter.

Silicon on Insulator (SOI)
Only a thin layer on the surface of a silicon wafer is used for making electronic components; the rest serves essentially as a mechanical support. The role of SOI is to electronically insulate a fine layer of monocrystalline silicon from the rest of the silicon wafer. Integrated circuits can then be fabricated on the top layer of the SOI wafers using the same processes as would be used on plain silicon wafers. The embedded layer of insulation enables the SOI-based chips to function at significantly higher speeds while reducing electrical losses. The result is an increase in performance and a reduction in power consumption. There are two types of SOI wafers. Thin film SOI wafers have a device layer <1.5 ?m and thick film wafers have a device layer >1.5 μm.

Wafer bonding. – In this process the surface of two wafers are coated with an insulating layer (usually oxide). The insulating layers are then bonded together in a furnace creating one single wafer with a buried oxide layer (BOX) sandwiched between layers of semiconductor. The top of the wafer is then lapped and polished until a desired thickness of semiconductor above the BOX is achieved.

SIMOX – Separation by Implantation of Oxide. In this process a bulk semiconductor wafer is bombarded with oxygen ions, crating a layer of buried oxide. The thickness of intrinsic semiconductor above the box is determined by the ion energy. An anneal reinforces Si-O bonds in the BOX.

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注